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Overdispersed Generalized Linear Models

Dipak K. Dey, Alan E. Gelfand and Fengchun Peng

ABSTRACT

Generalized linear models have become a standard class of models for data analysts. Howev-

er in some applications, heterogeneity in samples is too great to be explained by the simple

variance function implicit in such models. Utilizing a two parameter exponential family

which is overdispersed relative to a specified one parameter exponential family enables the

creation of classes of overdispersed generalized linear models (OGLM's) which are analyt-

ically attractive. We propose fitting such models within a Bayesian framework employing

noninformative priors in order to let the data drive the inference. Hence our analysis approx-

imates likelihood-based inference but with possibly more reliable estimates of variability for

small sample sizes. Bayesian calculations are carried out using a Metropolis-within-Gibbs

sampling algorithm. An illustrative example using a data set involving damage incidents to

cargo ships is presented. Details of the data analysis are provided including comparison with

the standard generalized linear models analysis. Several diagnostic tools reveal the improved

performance of the OGLM.

KEY WORDS: Exponential families; Exponential dispersion models; Jeifreys's prior; Mix-
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1 INTRODUCTION

Generalized linear models (GLM) have by now become a standard class of models in the

data analyst's tool box. The evolution of these models as well as details regarding inference,

fitting, model checking, etc, is documented in the book by McCullagh and Nelder (1989).

The GLIM software package is widely available and utilized.

Recently, such models have been criticized in certain applications as being too restrictive

due to the fact that the variance is a specified function of the mean. In practice samples are

often found to be too heterogeneous to be explained by such a simple functional relationship;

variability tends to be larger than that captured through this function. A natural remedy is

to consider a larger class of models.

Historically, the most frequently used approach for creating a larger class has been

through mixture models. For instance the one parameter exponential family defining the

GLM is mixed with a two parameter exponential family for the canonical parameter 0

(equivalently the mean parameter 1L) resulting in a two parameter rginal mixture family

for the data. Shaked (1980) showed that such mixing necessarily inflates the model variance.

Such overdispersion is of a certain type. Since the likelihood depends upon sample size while

the mixture distribution does not, the relative overdispersion of the resulting mixture family

to the original exponential family tends to infinity as sample size does. In other words, tak-

ing additional observations within a population does not increase our knowledge regarding

heterogeneity across populations. (See Gelfand and Dalal, 1990 in this regard.) We also note

that the resulting overdispersed family of mixture models will generally be awkward to work

with since it will no longer be an exponential family (e.g. Beta-binomial, Poisson-gamma).

Efron (1986) presents an alternative approach through so-called double exponential fami-

lies. Such families are derived as the saddle point approximation to the density of an average

of n* random variables from a one parameter exponential family for large n". The param-

eter n•; written suggestively by Efron as np, 0 < p < 1 for actual sample size n, introduces

p as a second parameter in the model along with the canonical parameter 8. Customary
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inclusion of a dispersion parameter, say 0, to the usual one parameter exponential family

results in an exponential dispersion model, EDM (Jorgensen, 1987). Because 0 enters as

a sample size or shape parameter, associated inference is usually handled differently from

that for 9 or ja. A one parameter exponential family in 0 arises for each given 0 but, as a

two parameter model in (0, 0), we no longer have an exponential family . Recently, Ganio

and Schafer (1992) circumvent this problem in an approximate fashion by viewing the EDM

as embedded within Efron's double exponential family . The asymptotics associated with

Efron's family reveal o-rerdispersion relative to the original exponential family which tends

to a constant as n --+ oo, unlike the mixture case (Efron, 1986; Gelfand & Dalal, 1990).

Gelfand & Dalal (1990) argue that an appeal to asymptotics is not necessary to justify

such models. More generally, for a given one parameter exponential family they introduce

a two parameter exponential family of models which is overdispersed. This family includes

Efron's model as a special case and also includes a family discussed in Lindsay (1986).

Retaining the exponential family structure simplifies inference (as we shall detail in the

subsequent sections). Relative overdispersion behaves as in Efron's models. Gelfand and

Dalal suggested that, with the specification of link functions, these parameters could each be

given the usual GLM structure but take the matter no further. Our objective here is to fully

examine such models which we refer to as overdispersed generalized linear models(OGLM's).

Again the selling points of our approach include the familiarity of exponential families,

the ready interpretation of model parameters, the unification of modeling by absorbing

earlier cases and exact inference rather than that from possibly inappropriate asymptotic

approximations.

Another approach for handling heterogeneity in GLM's is through the use of random ef-

fects. See, e.g., Breslow and Clayton (1993) for a discussion and review of the literature. In

the simplest version a standard GLM form is employed, but for each individual or population

in the sample, a random effect is added to the fixed covariate effect term in the definition

of the mean structure resulting in a generalized linear mixed model(GLMM). These random

effects, sometimes called frailties, are introduced to "soak up variability" and hence clarify

the explanation provided by the covariates. The likelihood retains all of the random effects.
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Often these individual effects are of interest but even if they are not, marginalization over

them is generally intractable. Such a marginalized density or likelihood is an example of

the aforementioned mixing. With the random effects, the likelihood is nonregular in that,

as sample size tends to infinity so does the number of model parameters. Customary ap-

proaches for model adequacy and model choice fail since the usual asymptotic distribution

theory is no longer valid. OGLM's are regular and parsimonious compared to a GLMM but

carry parameters in addition to those of the standard GLM which permit the possibility of

capturing overdispersion within an exponential family framework.

We adopt a Bayesian perspective in fitting these models since we are drawn to the unifying

use of inference summaries based upon the posterior implicit therein. However we assume

that primary concern lies with the modeling incorporated in the likelihood and thus adopt an

objective Bayesian stance employing noninformative prior specifications. For large sample

sizes our inference will be close to that arising from maximum likelihood; for smaller samples

our estimates of variability should be more appropriate than asymptotic ones associated with

likelihood methods. Required Bayesian computation is handled through a Metropolis-within-

Gibbs Markov chain Monte Carlo approach resulting in samples essentially from the joint

posterior distribution which may be summarized to provide any desired inference. Such

samples may also be used as the starting point for sampling from predictive distributions

to investigate questions of model adequacy and model choice. Bayesian fitting of GLM's is

discussed in Dellaportas and Smith (1993).

The format of this paper is then the following. In section 2 we formalize notation to

develop required likelihoods. We also review properties of the overdispersed exponential

family of models. In section 3 we develop Fisher's information matrix for these models which

is important for both likelihood-based and Bayesian inference. For the Bayesian approach

there is concern regarding the propriety of posteriors arising under Jeffreys's prior, which is

obtained from Fisher's information matrix, as well as under a flat prior. In an appendix we

address this question extending the results of Ibrahim and Laud (1991). Finally in section

4 we undertake an analysis of a data set involving wave damage to cargo vessels. We offer a

reasonably complete posterior analysis of an OGLM fitted to the data as well as comparison
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with the likelihood analysis of the standard GLM. We also use several diagnostic tools to

reveal the improved performance of the OGLM.

2 OVERDISPERSED GENERALIZED LINEAR

MODELS

Gelfand and Dalai (1990) discuss the class of two-parameter exponential family models

of the form

f(y i 0, r) = b(y)e0V+wT(•I•-P') (1)

where if y is continuous, f is assumed to be a density with respect to Lebesgue measure while

if y is discrete, f is assumed to be a density with respect to counting measure. Assuming

that (1) is integrable over ye y, they show that, if T(y) is convex then, for a common mean,

var(y) increases in T.

It is presumed that the natural parameter space contains a two dimensional rectangle

which, by translation, can be taken to contain -r = 0. Then the associated one parameter

exponential family arises at T = 0 and takes the form

f(y 1 0) = (2)

with x(O) = p(8, 0). Thus, as T" increases from 0, var(y) increases relative to that under the

associated one parameter exponential family, capturing the notion of overdispersion.

Expression (2) is the customary one parameter exponential family from which a GLM is

developed. In particular -= E(y) = X'(0), var(y) = X"(0) = V(As). Here X'(0) is strictly

increasing in 9 so that u and 9 are one-to-one (0 = (x')-Y,()). V(1&) is called the variance

function. A GLM is defined through a link function g, a strictly increasing differentiable

transformation from ; to 77eR 1 , i.e., g(;&) = T1 = zT,, where x and 3 are, respectively, a

known vector of explanatory variables and an unknown vector of model parameters. A more

general version of (2) is

f(Y 18, 0) = (, )eev-xe"/a. (3)
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Now var(y) = (,(O))-V(.,). If y is viewed as an average of say n random variables then a

usual form for a(0) is (nO)-1. Setting 0*e = nO, 0* is referred to as the dispersion parameter

and (3) is called an exponential dispersion model(EDM) (Jorgensen, 1987). Ganio and

Schafer (1992) extend the GLM based on (2) to an EDM, where 0 = h(zTcg) with z a known

vector and a an unknown parameter vector. They assume zTca includes an intercept. The

two parameter family in (3) differs from that in (1) in the sense that (1) is a customary

two parameter exponential family whereas (3) is a customary one parameter family for each

fixed 0.

Efron (1986) defined the double exponential family of models through the density

1(y, I ,.,, n) = ,o, p, n)p2,,e'"-,))'")-ao€,'•))) (4)

where 8(y) = (X')-'(y). Here y is viewed as an average of n i.i.d. random variables, 0 is

the canonical parameter and p is a dispersion parameter. In regression problems he assumes

a GLM in 0 (canonical link), i.e., 0 - xTf and that p = h(zTa) for a suitable h. Using

various expansions, Efron shows that (4) permits attractive approximation as n grows large.

Most notably, I behaves like (3) with a(0) - (np)-1 . Hence Ganio and Schafer (1992) treat

their extended GLM, based upon (3), as an example of Efron's double exponential family

and carry out their model fitting following his examples.

We note that, regardless of n, (4) is of the form (1) with T(y) = 0(y - X(O(y)),

r = n(1 - p) and 0 = npO. Straightforward calculation shows this T(y) is convex so that, in

fact, (4) is a special case of (1). As Gelfand and Dalal (1990) show, other choices of T(y)

may be more appropriate and in any event it seems preferable to work with the exact form

(1) rather than with approximation to (4).

Returning to (1), under usual regularity conditions, we have the following properties. If
p(.,.) = 8D then p(lO) = E(y 1, r) = •, .= ar(y I 0, 7-), p(',') = E(T(y) I, T), etc.

It is sometimes convenient to consider (1) through a mean parametrization

f(Y I ,',r) = , (5)

In (5), we employ the same sort of notation for 7k as for p. By comparison with (1) we
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have = 0•-. 0 )(1A, -r) and p(e, r) = -0(j&, -r) + 1A0(.o)(i, T). Using (5) and straightforward

calculation, we can show that E ("IE') -= 0, Le, thatpa

in the sense of Bamndorff-Nielsen (1978, p184) and Cox and Reid (1987).

The only practical drawback to working with (1) is that p(9, r) is not available explic-

itly. While x(0) in (2) is usually an explicit function of 0, p(,T,r) = log f b(y)eel+•T(v)dy

usually requires a univa.riate numerical integration or summation. In the examples we have

investigated thus far this has not presented a problem.

To create an overdispersed generalized linear model (OGLM) from (1) suppose we have

independent responses y, with associated covariates zj,p x 1 and z,, q x 1, i=1,2,..,n. The

components of z and z need not be exclusive. Let y = (Y1, Y2, "", Y,,) and define 6i - g(zT/3)

and -ri = h(zTa) where g and h are strictly increasing. The resulting likelihood is,

The monotonicity of g and h is natural and insures that 9i is monotonic in za and that

IN is monotonic in za facilitating interpretation. Of course such monotonicity does not

imply that, e.g., 8i is monotone in each covariate. The form zFP3 allows a covariate to

enter as a polynomial. If an explanatory variable appears in zi but not in zi, say Zil,

then RJ!i = (-2p ,'Tr)g'(z-j8)fi. But S (2,O) and g' are strictly positive, A is strictly

monotone in za with the sign of 61 determining the direction. If the variable appears in z1

as well, its influence on A is less clear since now -9 involves p(lz), the covariance between Yi

and T(y). In any event, using a Bayesian framework with a sampling-based implementation

enables straightforward computation of E(/&E /), the posterior mean of /U at any z2 and zi

allowing us to study its change as covariate levels change. In the example of section 4 we

have taken g and h to be the identity functions, in the spirit of canonical links. If we wanted

to force overdispersion (-r1 > 0) we could, for example, take T = exp(zTa).
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3 INFORMATION CALCULATIONS AND PRIOR

SPECIFICATIONS FOR AN OGLM

The Fisher information matrix associated with (6) is of interest for both likelihood-based

inference as well as Bayesian inference. Evaluated at the MLE, it provides an estimate of the

large sample covariance structure for the MLE's of /3 and a. In the Bayesian setting, again

evaluated at the MLE and again when sample sizes are large, it provides an approximation

to the posterior covariance matrix for / and a. Also, the square root of the determinant of

this matrix, as a function of 0 and a, is known as Jeffreys's prior and is commonly used as

"a "noninformativen specification. Ibrahim and Laud (1991) obtain this matrix in the case of

"a generalized linear model developed from (3), assuming 0 is known, and discuss its use as

"a prior. We extended their calculation to (6).

Straightforwardly we may show that

l ~ogLr.(j, ct, v)' _ (2 ,.0,(9,,),r •.,(,•)
(a 21ogL(f,) , )) 2 )(0, ) Z(9 ))2

I = -E o, ,)I,•(h'

(a 2logL(f3, a, y),)
E (8loL/3a v) = - •pcll)(O,,,-,)ZiIi(g'(Z:T/))(h(Z4"!)).

Let Xdenote the nxp design matrix arising from the :s, Z the nxq design matrix arising

from the z's, Me an nxn diagonal matrix with (M e )11 = p(2,0)(9., M)(g(zJi))2, . an nXn

diagonal matrix with (M4),, = pQ(,2)(8,, A)(h'(Zc,)) 2 and Me,, an =n diagonal matrix

with ((.Me,.). = p(4')(CS, Tr)(g'(Cx/))(h'(zTa)). Then

I(/3, a) = ( XTM,•,Z (7)
kZTMOIX ZTMTZ

and Jeifreys's prior is II(8, a)12.

To work with (7) requires calculation of p, p(2,0) P(0,2 ) and p(1,). This in turn, requires
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calculation of six integrals of the form fycVr(y)b(y)eA'J4(v)dy for the set of (c,d) from

{(0,0) (1,0) (2,0) (0,1) (0,2) (1,1)1. Numerical integration or summation for such univariate

integrals is generally routine.

Suppose instead we define an extension of the GLM using the mean parametrization (5),

setting a = g(2 T/3) with again r = h(zTa). In the case of (2), i.e. -r = 0, this is, in fact,

the more usual way of formulating a GLM. Paralleling (7) let us now define M, as an nxn

diagonal matrix with (M,)n = 0(2,0)(,", -r)(g'(XT,6))2 and M. an nxn diagonal matrix

with (M,) 1 , = 0k( 0 ,2)(14,, Tr)(h,(ziTa)) 2 . The orthogonality of /i and r results in

XoMM .0 ) (8)

Hence Jeffreys's prior is 21(1, a)1* = IX2MXIiIZTM.Z14.

It is worth observing that obtaining the MLE for 0 and a under (6) is challenging.

Customary iteratively reweighted least squares algorithms such as Fisher scoring will require

the calculation of p and several of its partial derivatives at each (0j, Tr). A grid search

algorithm would only require calculation of p but will be very inefficient in higher dimensions.

Hence, fitting the Bayesian model, using a sampling-based approach, is no harder than

performing a likelihood analysis. But then, an important question to ask is whether either a

flat prior for (13, a) or Jeffreys's prior using (7), both of which are improper, in combination

with the likelihood in (6), results in a proper posterior for (16, a). We provide an answer in

the appendix, extending work of Ibrahim and Laud (1991) who address this question in the

case of a GLM developed from (3).

4 AN OVERDISPERSED POISSON MODEL

McCullagh and Nelder (1989, p204) discuss a data set where the response variable is the

number of damage incidents by waves to cargo ships. For each of 34 ships the aggregate

months in service were recorded as well as the number of damage incidents over that period.
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Explanatory factors are ship type having 5 levels (A, B, C, D, E), year of construction having

4 levels (CPI, CP2, CP3, CP4) and period of operation having two levels (SPI, SP2). Since

the response is a count, McCullagh and Nelder propose a Poisson regression presuming that

the expected number of damage incidents is directly proportional to the aggregate months

in service, i.e., the total period of risk. Using a canonical link the GLM sets

9 = log (aggregate months service) + 0o + effect due to ship type

+ effect due to year of construction + effect due to service period (9)

The log(aggregate months service) term is called an offset, its coefficient fixed at 1 as a result

of the proportionality assumption.

The parameter estimates and associated confidence intervals for (9) under the standard

GLM appears in the first column of Table 1. For each factor, the first level is taken as a base-

line and its effect is set to zero. McCullagh and Nelder incorporate a dispersion parameter

0, obtaining an estimate $ = 1.69, indicating overdispersion relative to the standard Poisson

density which, intrinsically, has 0 = 1. Of course, in fitting such an EDM, the estimates of

the effects, of the 91 and of the Ai are unaffected by the presence of 0. Our model in (1)

incorporates overdispersion in a much different way; under (1), A = p(O,°)(89, -ri), a function

of the dispersion parameter. McCullagh and Nelder note that some points are not well fit

using their EDM.

We consider three Bayesian models, all fit using a flat prior for the effects. Model I

fits the GLM in (9) as a reduced case of (1) with - = 0 (and, of course, 0 = 1) result-

ing in a 9 parameter model. With regard to inference about the mean structure, model

I is essentially equivalent to the model of McCullagh and Nelder. Model 2 incorporates a

constant dispersion parameter r =- ao with the convex function, T(1 i) = (y + 1) log(y + 1).

Finally, anticipating that overdispersion might increase with exposure, model 3 sets

Tr = ao + a, log(aggregate months service), using the same T(y), an 11 parameter mod-

el. The Bayesian fits for models 1, 2 and 3 are produced in Table 1 as well. Comparing

the likelihood analysis with the Bayesian analysis for model 1 there is an indication that the

likelihood based confidence intervals, arising under asymptotic theory, may be too long and
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too symmetric.

The deviations between the observed y,. and the posterior mean E(y, I Y) are given in
Table 2. The abundance of small counts suggest, that the exact analysis under our model will
be more appropriate that the asymptotic models of Efron (1986) and of Ganio and Schafer
(1992). The posterior densities under model 3 for ao and a, are presented in Figures la
and Ib respectively. These figures, along with the last column of Table 1 provide evidence
of overdispersion (-r > 0) and, in addition, evidence that a, > 0, supporting the hypothesis
that overdispersion increases with exposure to risk. Also from Table 2, model 3 seems to
better fit the most of larger y•., which are associated with greater exposure.

Fitting models 2 and 3 requires calculation of p(9, r) which is the sum of the form

p(O"O• = log (Z!!)-l ft•r(y). (10)

Calculation of Jeifreys' prior requires of computation of sums similar to (10) as described
after (7). Under a fiat prior, a proper posterior results following the argument of the appendix
since, with canonical links, log concavity of (6) holds. We suspect a proper posterior arises
using Jeffreys' prior but the analytical approaches suggested in the appendix are not easily

applied.

Lastly, with regard to models 1, 2 and 3 we ask two questions. Are these models adequate?
Amongst those that are, which one would we choose? The Bayesian approach to answering
these questions is based upon predictive distributions. Under an improper flat prior the
marginal density of the data (the prior predictive density) is improper hence impossible to
calibrate. As an alternative we adopt a cross-validation approach, paralleling widely used
classical regression strategy. In particular, we consider the proper densities f(yr I y(r)),
r =- 1, 2, ... , 34, where y(,) denotes y with y, removed. We, in fact, condition on the
actual observations Y(v),•b creating the predictive distribution for y. under the model and
all the data except y•.. For model determination we would then compare, in some fashion,
f(yr I y(,),b,) with the -th observation, y,,,.b Such cross validation is discussed in Gelfand,

Dey and Chang (1992) and in further references provided there.
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A natural approach for model adequacy is to draw, for each r, a sample from

f(w I Y(,)I ), and compare this sample with , In particular using this sample we might

obtain the .025 and .975 quantiles of the f(y,. I Y(,),) say y and ,. and see how many of

the 34 y,, e •., VJ. Under each model at least 28 of the 34 intervals contained the corre-

sponding y,,•. Suppose instead we obtain the lower and upper quartiles off(y, I y(r),,)

and see how many y,, fall in their interquartile ranges. We find 11 for model 1, 18 for

model 2 and 16 for model 3. Under the true model we would expect half, i.e., 17. Hence both

model 2 and model 3 perform close to expectation though all three models seem adequate.

A well established tool for model choice is the conditional predictive ordinate (CPO),

f (y,?,J(),I)- A large value implies agreement between the observation and the model.

For comparing models, the ratio d , . (or perhaps log d4) indicates support

by point r for one model versus the other (see Pettit and Young, 1990). Figure 2 provides a

plot of logCPO ratios for model 3 vs model 1 and for model 3 vs model 2. Model 3 emerges as

best. A simple diagnostic with a frequentist flavor is E' (y,,.. - E(4 y)) 2/34 For model

1 this statistic is 25.37, for model 2 it is 12.09 and for model 3 it is 4.60, again supporting

model 3.

We recognize that the above model determination diagnostics are informal. However

they are in the spirit of widely used classical EDA approaches and do permit examination

of model performance at the level of the individual observation.

5 BRIEF REMARKS ON THE SAMPLING BASED

ANALYSIS OF THE MODELS

We col.clude with a brief discussion regarding the Bayesian fitting of the models, computation

of the f(y, I y(,)) and the sampling from them in the present context. For each model we used

a Metropolis-within-Gibbs Markov chain Monte Carlo algorithm (Mfiller, 1994) to develop

samples from the posterior, beginning with multiple starts in the vicinity of the maximum

likelihood estimate. Evaluation of the likelihood required repeated calculation of the function
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p(Gi, ri). These samples provide the Bayesian inference associated with Tables 1 and 2 and

Figure 1.

As for model determination, let (13S, a;), j = 1, ... , m denote a sample of size m from a

particular posterior. Since

f f(y I f3, a)f(13, a)dd
Ayf- IY(,)) = 13, a)f(3, c)dd

f f(y, Q,1) f(13, a I y)ddaf d~ag ftp, ct I y)dpdaU'9(•3,a)I(/ 3 .,a)fCv,[

f f(, I P,,- )-If(p,a I y)dp1cd'

a Monte Carlo estimate of (f(y,. I Y(,.) based upon (3;, a;) is

/(Y, 19(,)•,b) = (7n--•Z(f(Y. I P!•, ct*))-')-l. (11)
i=1

(11) is used for CPO calculations. See Gelfand and Dey (1994) for more general discussion.

Samples from f(y,. I y(.)) are drawn in two stages. Given samples (!3, a;•), j = 1,

2, ... , m, from f(,8, a I V) we convert these to samples from f(3, a I V(,)) by resam-

piing with weights qi = .(J(,3,,) See Smith and Gelfand (1992) in this re-

gard. Since f(,. I 9(,)) =f f(y,. I P3, a)f(1, a I y(,))dPdcd, if 63', a' is a draw from

f(.3, t I y,.) then if '- f( I, 3', a'), the marginal distribution of y,' is f(y, I y(,)).

APPENDIX: INTEGRABILITY OF POSTERIORS
FOR OGLM'S UNDER OBJECTIVE PRIOR SPEC-
IFICATIONS

Ibrahim and Laud (1991) investigate the propriety of a Bayesian GLM, i.e., the special case

when r = 0 in (6), under Jeffreys' prior which becomes IXTM.X i'. They show that if X

is full column rank and the likelihood is bounded above then a sufficient condition for the

posterior of P3 to be proper is that for each yj

fe6,-x(e)(X"(O))'d1 < co (Al'
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posterior of i to be proper is that for each yi

Je -CON'z(()"(Gx))id9 < cc

where E denotes the natural parameter space for the canonical parameter 8.

Since I(/3, a) is positive definite, 1I(p3, ot)1I < IXTMXIiIZTM•ZI4. Hence, if, in (6)

L(if, 0; Y) is bounded above, (Al) implies that f(,1 a, Y) is proper. Similarly if L(O, a; Y)

is bounded above, if -y(r) - p(O, r) for -rer and if for each y3

Ir e-T(V0-"(")(,7"(-r))21d"r < oo (A2)

then f(a, I fl, y) is proper. Of course the fact that these conditional distributions are proper

does not imply that the joint distribution is. Combining (6) and (7), we need to establish

when

a; Y)I1C8,a)Id(3da <cc. (A3)

Suppose we assume that X and Z are of fall column rank and that, L(1O, a; Y) is bounded

above. The fact that

P 
q

enables us to imitate the argument of Ibrahim and Laud to conclude that, if for each yi,

J r i. 69 w+ ' -( 9'- )(f(2 O( °, p -)0°" ( 9 "))i d9 d T < o o (A )

then (A3) holds. We omit details. Barndorff-Nielsen (1978) provides conditions for a

bounded likelihood and that these will usually hold for densities of the form (1). The

condition (AS) is easier to work with than (A3) since it is a two, rather than p + q, di-

mensional integral. However since p(2,o) and p(0,2 ) are not available explicitly they must be

approximated within (AS) making analytic investigation difficult.

Integrability of the posterior may also be investigated using a very different approach.

Suppose L(P3, a-; Y) is log concave. Then, if the prior f (3, a) is bounded, the posterior is
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the "lowerO one has all positive slope coefficients, the "upper" one all negative. The lower

one bounds log L on a set say Sr., the upper one on the complement, Su. But then upon

exponentiating, in each case we obtain a product of exponential curves. The exponentiated

* lower curve is immediately integrable over Sr, the upper curve over Su whence L is integrable

and hence the posterior, if f(/A, a) is bounded.

Log concavity of L(,3, 0; Y) is discussed in Wedderburn (1976) and in Dellaportas and

Smith (1993). The former is concerned with the behavior of MLE's, the latter with simplif-

ing Monte Carlo sampling of 0. What follows has implications for OGLM's in either context.

In particular, for the OGLM defined in (6), log concavity can be established by verifying a

simple nonnegative definiteness condition. Letting 0 = g(,q), r = h(-y) consider th -iction
826

= (iq)y+r(-y)T(y)-p(O(71),T(7)). If- > 0, -- > 0 and Xi>

(6) is log concave. For the canonical case 9 = r = y,,- var,(y), - 82 = vrnr(T(y))

and the determinant becomes variz(y)var(T(y))- cOU2 (y, T(y)) which is nonnegative whence

log concavity holds.

While the flat prior is obviously bounded, Jereys's prior need not be (consider the case

of the univariate normal standard deviation). Using the inequality in (A4), 11(.8, a)1i will

be bounded if the (Me)ij and (MT)ij are. In the canonical case this reduces to boundeduess

of vJar(y) and ,ar(T(y)).

15
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Table 1: Inference Summaries for Models 1, 2 and 3.

EDM Model 1 Model 2 Model 3
MLE Posterior Mean Posterior Mean Posterior Mean

Parameters (.95 CI) (.95 Credible Interval) (.95 Credible Interval) (.95 Credible Interval)
INT WE -6.410 -6.444 -6.337 -6.351

( -6.836, -5.984) (-6.863, -6.055) (-6.414, -6.226) (.6.467, -6.171)
B -0.540 -0.517 -0.571 -0.567

( -0.991, -0.089) (-0.813, -0.179) (-0.625, -0.525) (-0.738, -0.339)
C -0.690 -0.608 -0.611 -1.132

( -1.533, 0.153) (-1.156, 0.094) (-1.049, -0.275) (-2.163, -0.508)
D -0.080 -0.089 0.290 0.444

( -0.813, 0.653) (-0.616, 0.368) (0.276, 0.303) (0.194, 1.131)
E 0.330 0.317 0.248 0.521

( -0.277, 0.937) (-0.030, 0.731) (0.170, 0.309) ( 0.108, 0.734)
CP2 0.700 0.719 0.534 0.356

( 0.328, 1.072) (0.380, 1.081) (0.420, 0.631) (0.182, 0.480)
CP3 0.820 0.822 0.640 0.568

( 0.391, 1.249) (0.531, 1.103) (0.635, 0.645) (0.177, 0.737)
CP4 0.450 0.476 0.695 -0.764

(-0.138, 1.038) (0.055, 0.889) (0.532, 0.810) (-1.575, -0.498)
SP2 0.380 0.383 0.248 0.515

(0.086, 0.674) (0.151, 0.600) (0.172, 0.343) (0.219, 0.794)
0.034 0.038

(0.031, 0.040) (0.024, 0.072)
a, 0.009

(_0.001, 0.014)
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Table 2: Comparison of Fits for Models 1, 2 and 3. (Dev), - y,. - E(141y)

model I Model. 2-Mode 3
r . E(&Iy) (De) 9 E( ,jy) (Dev)H E( I Dy) (v).
1 0.0 0.24 -0.24 0.21 -0.21 0.23 -0.23

2 0.0 0.15 -0.15 0.15 -0.15 0.20 -0.20

3 3.0 3.61 -0.61 3.64 -0.64 2.97 0.03

4 4.0 4.69 -0.69 5.33 -1.33 5.03 -1.03

5 6.0 5.61 0.39 5.58 0.42 5.20 0.80

6 18.0 16.51 1.49 18.07 - 0.07 20.04 -2.04

7 11.0 3.47 7.53 8.55 2.45 11.53 -0.53

8 39.0 53.52 -14.52 53.26 -14.26 42.95 -3.95

9 29.0 25.51 3.49 24.17 4.83 34.14 -5.14

10 58.0 48.33 9.67 56.04 1.96 58.04 -0.04

11 53.0 52.97 0.03 58.40 -5.40 57.94 -4.94

12 12.0 15.21 -3.21 15.34 -3.34 14.14 -2.14

13 44.0 37.36 6.64 41.71 2.29 45.63 -1.63

14 18.0 6.32 11.68 21.05 -3.05 16.16 1.84

15 1.0 1.24 -0.24 1.07 -0.07 0.74 0.26

16 1.0 0.73 0.27 0.73 0.27 0.59 0.41

17 0.0 1.39 -1.39 1.45 -1.45 0.70 -0.70

18 1.0 1.53 -0.53 1.84 -0.84 1.03 -0.03

19 6.0 1.56 4.44 1.61 4.39 0.89 5.11

20 2.0 5.08 -3.08 5.84 -3.84 3.83 -1.83

21 1.0 0.74 0.26 0.58 0.42 0.14 0.86

22 0.0 0.63 -0.63 0.38 -0.38 0.77 -0.77

23 0.0 0.34 -0.34 0.23 -0.23 0.55 -0.55

24 0.0 1.24 -1.24 0.90 -0.90 1.27 -1.27

25 0.0 1.06 -1.06 0.87 -0.87 1.42 -1.42

26 2.0 1.68 0.32 1.20 0.80 1.88 0.12

27 11.0 7.77 3.23 6.06 4.94 11.39 -0.39

28 4.0 14.18 -10.18 7.34 -3.34 5.04 -1.04

29 0.0 0.11 -0.11 0.10 -0.10 0.14 -0.14

30 7.0 3.34 3.66 3.57 3.43 3.79 3.21

31 7.0 2.37 4.63 2.91 4.09 3.40 3.60

32 5.0 5.50 -0.50 5.80 -0.80 7.10 -2.10

33 12.0 22.26 -10.26 15.94 -3.94 13.58 -1.58

34 1.0 3.44 -2.44 2.84 -1.84 1.42 -0.42
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Figure 1: Posterior Densities for a 0 and a I under Model I
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